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SDMARY - 1 - 

The tiaplex tlgoritha for solving lineir progranning 

probleat aay bt aodifled la varioat «ays to provide algorithas 

for various aaxiliary purposes.  la partiealar, the use of the 

dial systea allows arbitrary changes to be aade in the right 

hand aoabors of the restraiat equations. Aa allied algoritha — 

called paraaetric linear prograaaing — allows desired changes 

to be introduced gradually in such a way as to aaintain feasi- 

bility aad optiaality at all tiaes. Siailarly, changes in the 

optiaiiing fora can be aade either arbitrarily or in such a way 

as to aaintain optiaality. If the siaplex aethod is viewed as 

being coaposed of certain rather coaprehensive operations, then 

all these variations can be stated in teras of the following set 

of those abstract or pseudo-operations, where the order of oxe- 

cation aay vary for difforoat purposes. 

(1> Developaoat of a pricing vector or vectors. 

(2) Choice of aa Index s of soae coluan vector P. not 
v S 

in the present basis. 

(3) Representation of the vector P in teras of the 
s 

present basis. 

(4) Choice of aa iadex r of soae coluan P.  in the 
Jr 

present basis. 

(5) Change of basis, with P replacing P. , or change 
Jr 

of the right head aeabers of the restraint 

equations. 

It is suggested that a breakdown of this type has iaportant 

iaplications for flexibility and adaptability in a coaputer code. 



REVISIONS AND EXTENSIONS TO THE SIMPLEX METHOD 

(With Side-lights on Progranning Techniques) 

* 

Since this session enphisizes coaputing techniques, I 

will tike • little tine to explain a problen which I believe 

should be wore widely understood by people who require large- 

scale computations«  As this concerns the economics of machine 

utilization, it is perhaps not entirely inappropriate. 

When the original formulator of a large problem — usually, 

and hereafter, called the 'customer* — brings his monstrous 

brain child to be prepared for machine calculation, he is full 

of assurances that this example is the forerunner of several 

entirely similar ones for which the same program can be used. 

The customer is entirely honest in this but unfortunately what 

usually happens is the following.  Just as the routine is nearly 

finished, the customer rushes down with some 'trivial* last-minute 

changes. These having been more or less graciously accommodated 

and the code finally checked out on the machine, it turns out 

that certain numerical difficulties crop up. Change is piled 

on change and eventually an acceptable set of answers is obtained 

but the code has lost all elegance or clarity which it may ever 

have possessed.  In the meantime, of course, the customer has 

been pondering deeply over the imperfections in his method v-hich 

these difficulties have revealed and, when he presents the next 

example, he has changed a few formulas, refined a few rules, 

but these he suggests are mere details which the coder can 

incorporate in the program before running the next case.  At 

this point, the programmer must consider whether it is not 

cheaper to start all over. 
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No« having played both the role of prograaaer and, in part, 

of cuftoaer, I have repeatedly been faced with the problen of 

aaking extensive changes in a large code. One atteapt at 

■aking these less painful and less expensive has coae about 

as a result of considerable experience in coding up routines 
* 

for linear prograaaing probleas to be solved with the simplex 

aethod oa the IBM 701 Qe,fJ. Since such a code aay involve 
- 

upwards of 5000 individual coaaands in its entirety, the prob- 

lea is by no aeans a simple one. 

One iaportaat phase of the prograaaing art is the use of 

what are called asseably routines.  Since, for aany reasons, 

it is virtually iapossible, in practice, to write down the 

required list of coaaands in aachine code, soae sort of con- 

venient language interaediate between ordinary written in- 

strnctions and aachine coaaands is devised. Then a program 

is prepared — at considerable initial cost — which can 

'read* the interaediate language and translate it into 

aachine code.  Subsequent probleas are then coded in the 

interaediate language and, as a preliminary step in the com- 

putations, the code is processed  by the asseably routine. 

Everytiae it is necessary to re-asseable the code, the cost 

of the code is increased by aachine tiae as well as programmers' 

time. 

In all prograas which are to be assembled, the notion of 

regions is proainent.  A region is a group of consecutive aeaory 
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cells set aside for soae more or less well-defined set of 

quantities — connands or numbers or sometinei both.  Regions 

are usually simply created at mill as need arises« the reason 

that they are needed at all being that the logical layout of 

a complex procedure can be conceptualized only in terms of 

functional parts that make up the whole.  Once a region has 

been coded up and checked out (with of course appropriate 

devices for implementing its use), it takes on a new character 

— it becomes in fact an abstract, or pseudo-operation which 

is henceforth available for use in future problems.  By a 

pseudo-operation is meant some arithmetic, logical, or utility 

activity which requires more than one actual machine order. 

For semantic purposes, let us denote adjustments in a 

program necessitated by coding errors as corrections, and those 

necessitated by procedural changes as modifications. Then once 

a particular region — i.e. a pseudo-operation — has been 

checked out, there are no more corrections to be made provided, 

of course, that the assumptions on which it is based are always 

observed.  Now procedural changes do not usually involve any 

modification in lower order pseudo-operations such, for example, 

as adding two vectors together.  The modifications occur — or 

should do so if proper planning is done — in what are called 

control regions, the higher order abstractions which control 

the order and frequency of use of the subservient regions.  The 

big difficulty is that there is often not a sufficiently compre- 

hensive picture of the whole problem shared by the customer and 
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coder at the outset to allow proper planning, that is, the 

control regions do not bear the proper relationship to the prob- 

leas at hand. 

At this point I aust mention that it is possible to use a 

pseudo-code which is never assembled into machine language at 

all but which requires the use of an interpretive routine for 

the actual running of a problem — a method widely practiced. 

This interpretive routine usually recognises some fairly com- 

prehensive list of commands but requires that a great deal be 

explicitly specified and is very time-consuming in operation 

for large, special-purpose codes.  Moreover, extensive changes 

axe nearly as difficult in a universal pseudo-code as in machine 

code. What is needed is a pseudo-code which takes advantage 

of the extensive background of conventions which inevitably 

arises in protracted computations and calculations along fixed 

lines. However, it should be possible to couple together var- 

ious parts of the code on demand. Just as an interpretive 

routine does.  In short, the code should be analogous to the 

mathematician's thought processes.  In this way variations in 

the structure of the main procedure are easily arranged with a 

minimum of coding and check-out time, and time is not wasted in 

repeatedly interpreting the same thing while running the Job. 

We now have a 701 code based on this philosophy. The pseudo- 

operations mentioned below reflect its major structure. 

Time limitations force me to make the seemingly reason- 

able assumption that those interested in this paper are already 

familiar with the simplex method.  However, since we use a 
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slightly different elgorithn than nost others, let ne Just 

briefly sketch the way in which we set up the coaputttions 

Qa.c.e.fl. There is, first of all, a linear form to be 

optimized, and I will convene that, as written, it is to be 

ninimized. 

(6) 
J = 

a0|xj - min* 

This   is  to  be done  subject  to  two classes of restraints on  the 

n  variables  xj. 

(7) Xj ^  0  ,     J   =  1,   .. .t   fti 

(6) n 
y     ajiX«   = bi   ,   i  = 1,   •••,   m, 
J=l      J  J 

where  the  ajj   and bj   (i   = 0,   1,   ...,   m;     J   s 1,   ...,  n)   are 

specified  and we  further assume,   without  loss of generality, 

that   all   the  b* >  0. 

Let us assemble all the a^j from (6) and (0) into one 

(m-M)X(n-fl) matrix P whose first column we make a unit vector. 

(9) P= 

1 

0 

ol 

'11 

'ml 

• • • 

• • • 

on 

In 

'mn 

" [/o* Pl* ,*,, PB
J* 

The columns we have called Pj (J =0, 1, .... n) where P0 is 

the unit vector.  With P0 we will associate a new variable x0 

and form the column of variables 

(10) X = J x0, X] xn ̂  • 

•Braces will be used to denote column vectors and parentheses 
to denote rows. 
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The right hand side will be denoted by the colunn vector 

(11) Q =j 0, bj b, -. 

Now the problem way be  stated  as: 

Maximize x0  subject to  (7)   and the matrix equation 

(12) PX ■ Q. 

I will ignore the questions of determining the rank of P 

and obtaining some feasible solution to (12), i.e. oae which 

satisfies (7). All this is taken care of by phase one of the 

simplex method, when necessary ria,c:2j. Let us merely assume 

that P has rank »»-1 and that a basic feasible solution is at 

hand which consists of a non-singular basis matrix B and an 

associated solution vector V * B-^Q where 

<13)   •"['V'JI PJ.]      V'.' 
is formed from a subset of the columns Pi. Let the values of 

the corresponding variables x.  (i = 0, 1, ..., m) be V|, with 

all other xj s 0. That is, 

(v0 = x0) 

by /3ik. 

(14) V = |v0,  vj,   ...,  vB 

Further denote the elements of  B~' 

(15) B-l =  {fiik) 

and any particular row of B~*  by^., 

(16) /tfj  =  (>*|0t   ^jjt   •••!    *im)» 

Note that  the first column of  B"1  is also a unit vector,   that  is, 

The  ÜXIi  row ^o of the  inver»0  *• called  a  pricing vector. 

If we define 

(17) S. s >» P   = /^Ir«! J • J       ^   ^ok'kj J   ~1|   * • ■ i   n 
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then the flnt ilaplex criterion it stated at follows: 

J 

If £. < 0 for snyj, then the value of x0 «ill 

(10)   be increased (or at least not decreased) if P 

is introduced into B. 

If all S. 2. 0,   then x s TA is max. 
j o   o 

If some s   <  0, the usual rule if to choose an index s by 

(19)   S = min £. < 0 taking saallest iadex in case 
S   J  J 

of ties. 

Then P, is introduced into B.  !■ erder to choose an index r of 

lone vector P.  in B which P( is to replace, we express Pf in 

leras of B. 

0)    B-1Pf = Y = jy0, yl yl . 

e second siiplex criterion (in its-'sinplifled for») is 

(20) 

Th 

now expressed as: 

If «ny y^ 0 for i j* 0. 

let Oi  = ^i/yi for those y|> 0 and i> 0 

= -♦• oo otherwise. 

(21) Then Q    - min 0.   taking snallest index in case 
r   i  * 

of ties. 

If all y,^ 0, then the value of xA has no i o 

upper bound. 

Assuming that x0 is bounded, then P.  is eliwinated fron B and 

replaced by Pg giving, after the change of basis, the new 

solution 

(22) B(V - ©ry) * •rP$ = BV = Q, 

with a new value of x , 

(23) vo= vo * «r^. i v0. 



P-562 
9-2-54 

Page »8 

Those fenlliir with the sinplex theory will note that, 

in using the siaplified second criterion, I have ignored the 

possibility of endless cycling through a recurring series of 

bases — a natter which has been discussed at considerable 

length in various papers ["la, 2, 3, 4l . We feel, however, 

that this is a very iaprobable eventuality there being, to date, 

only two extrenely synthetic exanples (by Alan Hoffman and 

Philip Volfe) in which cycling has occurred.  It is my view 

that non-convergence of the sinplex iterative process is only 

the Uniting case of slow convergence.  Until we understand 

nore clearly why sone problens converge quickly and others — 

which appear to be of sinilar structure — take nore iterations, 

there seens little point in conplicating a code to provide for 

the unlikely case while ignoring the nore frequent difficulty of 

slow convergence.  While either Dantzig's or Charnes* method 

[jit2l for rigorously resolving ties in choosing the index r 

will prevent absolute degeneracy — and hence avoid cycling — 

they still pernit an inpossible nunber of iterations, fron a 

practical standpoint, in bad cases. 

We have found it advantageous not only to transform Just 

the basis instead of the whole natrix P on every iteration, but 

also to express B"^ as a product of elenentary colunn natrices 

rie(4l. These elenentary natrices are forned, conceptually, 

fron a unit natrix by replacing the rth colunn by a vector 

^ s J 7 , >| *lmf*~l?}     "here ^r = 'if * 0.     Actually 

it is only necessary to record the index r and the vector *! iron 

each iteration.  This reduces considerably the amount of writing 
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necessary  to record  B"^   and  requires  less  rending for  the 

first  several  iterations.     This  form of the  inverse  is  also 

convenient   for  several  other  purposes,   including calculating 

the effects of various transformations on  a  systen and  facili- 

tating  checking  and restarting procedures  —  the latter being 

extreaely  important  in practice.    This product  form has been 

written   up  and  circulated   rather  widely r5  ; so   that   I   shall   not 

develop  the details of it  here.     It  seemed  necessary to remark 

on  it  however,   since  it  requires  the  redevelopment of the 

pricing  vector   /^0 on each   iteration  and certain statements  to 

follow night  not  be  clear   unless  this  fact  were  understood. 

Similarly,   when  a  P    is  chosen,   it  is   still   in   its original 

form and  must  actually be   transformed  into   the  vector Y by 

applying   B~   . 

In the form which I have outlined, then, one iteration 

of the simplex method can be considered as consisting of the 

following   five pseudo-operations. 

(i) 

(ii)   Compute S.     and either choose a £ or terminate 

(Optimum attained) 

Develop /»  for i = 0. 

(iii) 

(iv) 

(v) 

Compute Y = B"1*  for W = Ps. 

Choose the index r (or terminate if xA unbounded.) o 
Make  the  change  of base,   constructing  a  new ^ 

vector   and   transforming  V. 

As  will   appear,   this   is  a   sufficient  breakdown  of  the whole 

complex  of  operations  to   permit  discussion  of   important  varia- 

tions   in   the  method. 
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The  solution m( a  linear prograaning  problea is often 

merely  the  first  step in  the  investigation  of  a  larger economic 

or administrative problea.     As one example,   a  linear program 

may contain a parameter which  can be changed  to give different 

linear  approximations to  some  non-linear  relationship among  the 

variables.     If the non-linear  function is  continuous,   then  it 

is expected  that optimal  programs »ill differ only  slightly  for 

small   changes  in  the parameter.     It  is clearly desirable to  be 

able  to   introduce  slight  variations  using  a  previous optimal 

solution  as  a starting point,   rather than  to  consider each 

parametric chaage as  a whole  new programming  problem. 

There are three essentially distinct   questions of this 

kind each  of which can be   approached  in two  ways.    Of the result- 

ing  six  problems,   the  following  four  are  the most  amenable  to 

automatic computing  schemes.    We refer to  these as  post-opti- 

mality  problems  and the  techniques  for handling  them as  para- 

metric  linear programming  or PLP. 

Given  an optimal   solution BV = Q to   the  problem of maxi- 

mising x0  subject  to  (7)   and   (12),   then: 

Pr.l)   How much can Q be changed in some specified way before 

the basis B is non-feasible,   i.e.  before  the necessary 

change  in V makes  some v. ^   0? 

Pr.2)   If  an arbitrary change  is made  in Q and  the basis becomes 

non-feasible,   how can  this be corrected    or  it  be deter- 

mined that  the whole   new problem is  non-feasible? 

Pr.3)   How much can the  form   (6)   be changed   in   some  specified 

way  before  the solution   is no longer  optimal,   i.e.   before 
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i 

I 

the necessary  change  in fi    makes   some   %. <  0? 
o J 

Pr.4) If some arbitrary change is made in the «Q.*«. how can this 

be accounted for in B"1 (more particularly in 4 ) so that 
o 

vectors not in the basis — or even in the original system 

— can be priced out? 

We could also ask a pair of similar questions about changes in 

the original system (8), i.e. in the matrix P with the zero-th 

row and the iero-th column excepted.  However, for changes 

outside the basis B, the problems are trivial whereas, for 

changes within B, the general case is quite messy.  It is 

better to improvise tricks for the particular model at hand or 

else start all over, in the latter case.  Consequently, we will 

make no further mention of parameters in the left members of 

the restraint equcfions although they are used fairly frequently. 

Pr. 2 can be answered very quickly.  Simply make the 

desired change in Q and re-solve for V.  If the resulting V 

contains no negative elements, all is well since, in any event, 

the pricing vector /s  remains unchanged.  Hence we still have 

all &j Z 0 and the solution remains optimal as well as feasible. 

If some vj *■ 0, then apply the dual simplex algorithm to regain 

feasibility, making the necessary changes of basis.  If this 

cannot be done, then no feasible solution exists for the new 

right hand side. 

The dual algorithm, as the name implies, operates on the 

dual problem, but does so in terms of «he primal system so that 

all computations can still be carried out in (ir*-l)-space instead 
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of (n+l)-tpace which is typically much larger Qb.fJ. Without 

attenpting to reconstruct the theory of the dual, let us note 

the following pertinent facts concerning the complete dualized 

system with notation consistent with the above. 

PRIMAL DUAL 
n ■ 

Objective: naxinize x0  = - 2lZ 1oJxJ     ■inl"lze  z  ~ Z    bi^"< 

Feasibility: Vj a 0  for  i  ^ 0 Sj 2   0  for  J   ?t 0 

Optinality: 6, ^  0  for J   ^ 0 

Criterion for 
inprovewent:     S    = win £. << 0 

Criterion  for 6   -   win   Tl/y     (1/0) 
elinination: y^O 

Vj i 0 for   i   >* 0 

vr = win v    <   0 

oJ o 1 ©   -   «In —* - Bin -*-*- 

V0 rJ r J 

Unbounded case:       All   y.   <   0 
is 

All )rrJ> 

The dual algorithn can now also be stated in terms of five pseudo- 

operations which I number in a manner analagous to those for the 

regular primal algorithm. 

(iva) Choose the index r, or terminate.  (Optimum attained) 

(i)  Compute /^j for 1 = 0 and r. 

(iia) Choose 0 , or terminate if no ^.P.< 0. (Optimum 
• •'       unbounded) 

(iii) Compute Y = B-1* for W = Pf. 

(v)  Make the change of base, constructing a new 7) vector 

and transforming V. 

Pr.l is handled by a very similar algorithm but with 

somewhat more finesse.  Let q be the vector of changes which 

it is desired to make in Q. Then assume that an optimum 

solution BV = 0 has been obtained for the restraints 
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(24) PX = 0 + öq     (xj > 0.  i ^ 0) 

with the scalar 0=0.  We now compute the representation of (-q) 

in terms of B. 

(25) iT^-q) = if = jyo. ^ y^ 

Using the same pseudo-operation (iv) as for the normal simplex 

algorithm, we now compute, providing any y. > 0, 

(26) 0_ = min vi/yi for yj > 0. 
i^O 

Proceeding as though we were going to introduce (-q) into B 

in place of P. , we have 
Jr 

(27) 

whence adding 0 q to both sides and considering that Pi  is 
r j j 

really still in B, 

(28) 
Zjl  Pj   <vi  - «ryi>   *  0-Pjr  =  B(V - OrY)   = 0 ^ Orq. 

Now   (28)   is   still   a  basic  feasible  optimal   solution   for  the 

new right  hand   side  and Qr  is  the  greatest  value of  0 which 

allows  this  with   the  present   basis. 

If  it   is   desired  to  change   Q  by  more  than Orq  it  will  be 

necessary  to  change  basis   and  the  basis  vector  to  eliminate 

4lt4i  has  already   been  determined,   namely  Pi     since  this   is 
Jr 

where the 'bind* occurs as 0 increases.  Hence we must now 

determine some P. not in B which can be used as the real Ps to 

replace P,  and perhaps allow Q  to increase further.  Now if 
Jr 

we had such a Ps with the representation B" Pf
s ' y0f•Xi 

it would be netessary that y.. = A.P. t  0.  Me also wish to 

maintain optimality if possible, that is feasibility of the dual. 

This means that the new ^  (i.e. the first row of B  where B 
o 

, .. • i 
OS ft 

■ 
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it formed fron B by replacing P,  with P ) must have the 
Jr      s 

property that>5"0Pj^ 0 for J = 1, .... n.  The rules for 

elimination give 

y     /*P 

Jr   Jr  7rs    r s 

Hence we should choose y  < 0 since y  = £ ^ 0.  From this it rs os   * 
is easy to show that the index s is chosen by the same rule (iia) 

as was used in the straight dual algorithm above.'  Hence the PLP 

algorithm for changes in the right hand side goes as follows, 

where a new pseudo-operation (vi) is needed, 

(iii)  Compute Y = B'1* for W = (-q). 

(iv)   Choose the index r, or terminate,  (max Q  unbounded 

with present B.) 

(vi)   Subtract 0rY from V and add 0rq to Q. 

(i)    Computed, for i = 0 and r. 

(iia)  Choose 0 . or terminate.  (max x0 unbounded with 

present 0.) 

(ili)  Compute Y = B"1« for W = Ps. 

(v)    Make the change of base, constructing a new /| 

vector and transforming V. 

/ The following theorem is of considerable interest t^r 
\ 
^ this type of PLP. 

Theorem;     If the choice of r in (26) is unique (assuming 

same y^ > 0) and 

(a)    if ^-Pj < 0 for some J s 1» ..., n, 

then there exists a finite range of 0. « *© ^6Tt£f 
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for which the »olutlon obttlned by replacing 

P.  in B by Pf (chosen by (11a)) if both feasible 
r 

and optimal; or 

(b)    if all a  P > 0, then there is no feasible solution 
"r j -   

lor 0 >  0  . r 
A constructive  proof of  this   theorem is  quite   straightforward 

and even provides  a formula   for  the value of 6 ,     This  proof  can 

be   found in   another paper  which   I  prepared  about   a  year  ago 

and will be  omitted  here  fll. 

In order  to  consider  Prs.   3 and 4,   let  us  denote  the  top 

row of  P —   i.e.   the  coefficients  of x    and  the  ■inimizing   form — 

by 

^o  ~  (1»   ■ol*   Äo2,   ••••   •on^ 

If certain   (or  all)  of the  a0.   are  to be altered  by proportionate 

amounts   cr,   of  a  parameter  0,   let 
J 

«r= (O.^j,^ <rn) 

and consider the matriA F as having \tt  top row given by 

Let a given basic feasible optimal solution to the 

original problem be BY = Q which is then a solution for 0=0. 

Now if 0 is increased, Bt and hence B , is changed.  But due 

to the special structure of B — i.e. with its first column 

a unit vector — the only change in B  will also be in its 

top row/tf0( or as n economist would say, in the shadow prices« 

This can be seen from the following schematic diagram of B'1 

compared with B.  The matrix A is simply B with its first row 

and first column deleted. 
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1   (•.•••••. 
OJi       "J. 

0 

0 

-1 
(£   .... A    )' 

ol      on 

.-1 

Letting cr      correspond to vector P.  in B, a little algebra 
Ji Jl - 

shows the new value o(/$0,   call it /S 0,   is 

(29) J = A - 0 
1 = Ji i 

Thus Pr, 4 is solved. The now pricing vector 0     given by (29) 
o 

is used to price out as usual, but with the altered cost row, /> + 
o 

that is, the new values of the £ , call them £ , are 

(30)   7 (P. *• 0r P ) = F • 
^o J    Jo    J 

Pr. 3 can be stated as:  find the critical value of 

0^ 0 at which some J turns negative.  Expanding (29) and (30), 

siaplifying, and interpreting the question properly, gives the 

following criterion: 

(31) wax 0=0.= min 
J 

Vi for denoninator> 0 

Vipj "^ J i  Ji 

If the denominator is non-positive for all J, then 0 can be made 

arbitrarily large and the present basis will still be optimum. 

Otherwise, the index s determines (perhaps not uniquely) a vector 

Ps to introduce which may allow 0 to be increased again. The 

regular primal criterion for choosing'an index r is used to 

maintain feasibility if a change of basis is to be made. 
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I might remark in passing that the use of the product 

form of the inverse in machine computations is ideal for 

computing the row vector^g  in (29) or the sum vector > ^j ß^ 

for use in the denominator of (31). 

The algorithm for Pr. 4 is the same as the one for the 

regular simplex method once the specified amount 0 of cT* has 
«I 

been  added   to   each  a   .   and   the   correction   (29)   made  in  the 

inverse.     For   Pr.   3,   we   need  only  to  substitute  the computations 

involved   in   (31)   for  the   pseudo-operations   (i)   and   (ii),   i.e. 

we  replace   the   first   simplex   criterion with   (31).     This   is  only 

to  be  expected,   of  course,   for  once  an  optimum  solution  has   been 

obtained  to  the original   problem,   the  first   simplex criterion 

has  nothing  more  to  offer  -—   its   function   is   completed. 

In   summary,   let  me   again  re-emphasize   that  organizing 

computational   sehr   es   in   terms  if  fairly   comprehensive  pseudo- 

operations,   such  as  have   been   indicated,   is   advantageous   for 

the  coder,   the  mathematician,   and  the economist.     There   is, 

of  course,   nothing  new  in   the   notion either  of  regional   coding 

or of  abstract  or  pseudo-code.     My  complaint   is  that   the organi- 

zation  of   codes   into  regions   or   blocks  —  and   the  devices  used 

to  couple   them  together   and  execute  them —   is   all   too  often 

based  on   short-view expediency  or established   usage rather   than 

on  the   true   nature  of  the   problem?   for which   the  program  is 

designed.     Furthermore,   I   suspect   that   this   is   also  true   for 

many  problem  formulations,   apart   from whether   machine  codes   are 

written  or   not.     Mathematicians,   economists,   and  others  who   are 

potential   customers   for   the   services  of  a  machine   computing 

group   should  be   interested   in   being  as  much   as   possible   in 
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rapport with all those engaged in solving their problems.  All 

variations to date on the basic simplex algorithm, for instance, 

can be expressed in terns of Just a few of our pseudo-operations, 

very few more than we have already mentioned.  Consequently, if 

everyone's work is organixed and planned along these lines, then 

modifications involve only a reshuffling of large blocks of 

already proven code.  Furthermore, this sort of breakdown enhances 

the clarity of one's insight into the theory which underlies all 

these linear programming techniques — namely that of a system 

of linear inequalities in non-negative variables and its dual. 

(Actually, in applying the simplex method, the systems are sets 

of linear equalities.)  For example, the parameters Q  and 0 which 

we have discussed are really variables which are involved implicitl 

— but intimately — in any optimization problem with linear 

restraints in non-negative variables. When working with feasible 

solutions of the primal system, the variable 9  is made as large 

as it is possible to do and still maintain feasibility; the 

variable 0 plays the same role for feasible solutions of the dual. 

In fact,  as already noted, the change in the maximand x0 for the 

former case is -0£ > 0, whereas the change in the minimand z 

— which is really the same variable in the complete dualized 

system -* is given by 0vr £ 0 in the latter case.  Both Q  and 0 

are quotients with the pivot element, yrg, for denominator in 

either the regular primal or straight dual algorithms. When 

both systems are feasible, i.e. when the whole dualized system 

is optimal, then any desirable change in basis can only give 

another optimal solution, both 9 and 0 being zero and yr$ being 

any non-iero number.  If changes are made in the right-hand 
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side  0 or the  cost   row y0 .   then parametric  programming   provides 

slightly  different   formulas   for 0 or  0 to  maintain optimality, 

as  discussed above. 

To  conclude,   the  complete dualized   system is displayed 

in  a  form  consistent  with  the  preceding  notation  and  arrange- 

ment of the original  problem.     For  simplicity,   it has  been 

assumed  that   the  basis   B consists of   the   first  m+1  columns 

of  P.     It   is  hoped   that   a  careful  perusal   of   this tableau 

will   be as helpful   to  those readers  who  have  not yet  consider- 

ed   it   as   it  has  been  to  me   in  observing   the  remarkable 

relationships   that   exist   in  the  type  of  problems with  which 

we  have been  concerned.     A  full  explanation of these  relation- 

ships  which  the  tableau   is   intended   to  display can be   found 

in  reference Nl . 

. 
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